铝焊接变形和焊时易产生塌陷,因此在焊前应有针对性地制作夹具和垫板。
采用夹具时一般零件正反面都需要夹紧,并且夹具的刚性和夹紧力大小要适中,因为过小取不到控制变形作用,过大则焊缝拘束度太强易导致焊缝开裂,夹紧力按350Kg/100mm为宜。
软性铝材夹具可为碳钢或不锈钢,可以减缓散热;强化铝材可用铝材制造夹具,这样可以加强散热。
由于铝材表面覆盖有一层氧化铝,导致铝焊应用极为困难。表面氧化层的熔点接近2015,然而纯铝的熔点却仅有650。这也就意味着,当覆盖在表面的氧化层被焊穿时,底下的纯铝也会被熔化,无法进行后续焊接。只有当表面氧化层被破坏或是暴露出来,焊接才有效。
在使用交流电进行焊接时,钨极持续的在正负极之间进行切换。当钨极为正时,负极电子从工件移动到钨极,氧化层在此过程中。之后,钨极为负时,电子会从钨极移动到工件表面从而产生热量——这就是焊缝产生熔深所必需的。
铝合金激光焊接缺陷控制技术
在大功率激光的作用下,铝合金激光深熔焊缝的主要缺陷是气孔、表面塌陷和咬边,其中表面塌陷、咬边缺陷可以通过激光填丝焊接或激光电弧复合焊接改善;而焊缝气孔缺陷控制则比较困难。
现有的研究结果表明:铝合金激光深熔焊接存在两类特征气孔,一类为冶金气孔,同电弧熔化焊一样,由于焊接过程材料污染或空气侵入所导致的氢气孔;另一类为工艺气孔,是由于激光深熔焊接过程所固有的小孔不稳定波动所致。
在激光深熔焊过程中,小孔因液体金属粘滞作用往往滞后于光束移动,其直径和深度受等离子体/金属蒸汽的影响产生波动,随着光束的移动和熔池金属的流动,未熔透深熔焊接因熔池金属流动闭合在小孔出现气泡,全熔透深熔焊接则在小孔中部细腰处出现气泡。气泡随液体金属流动而迁移、翻滚,或逸出熔池表面,或被推回到小孔,当气泡被熔池凝固、被金属前沿俘获,即成为焊缝气孔。