近年来,无铅压电陶瓷新体系的构建、压电铁电性能的强化以及相变机制的研究取得了长足的进步,这为无铅压电陶瓷的实用化奠定了实践和理论基础.对于BNT基及KNN基陶瓷来说,经过细致的组分筛选,可以获得退极化温度高、压电性能优良且温度稳定性好的陶瓷配方,以用于制作换能器、传感器等器件.表9列出了部分无铅压电陶瓷器件.由表9可知,选取合适的材料参数,可以获得性能良好的无铅器件;部分无铅压电陶瓷器件具有可比拟于铅基器件的性能,在一些中低端领域有潜在的实用性.7 研究展望近年来,无铅压电陶瓷的研究和开发取得了长足进步,获得了一些性能良好的无铅压电陶瓷体系,部分配方在某些领域具有了一定的实用化前景.相
比于铅基PZT陶瓷,无铅压电陶瓷在晶体结构、电子
结构以及相变特性等方面具有自身的特点.
电子陶瓷材料的特性
在各种精密陶瓷中,以电子陶瓷的应用样,市场也大,由於其优异的特性,且具有一些特殊的性能,如压电性、焦电性等,使它在电子工业上占有一个非常重要的地位,其特性分述如下:
1.
具有范围极为宽广的电气特性:
金属是导体,塑胶不导电是一般人耳熟能详的,但是陶瓷却具有极为宽广的电气特性,从一般的绝缘体,到半导体,导体、甚至超导体,都有不同的陶瓷具备此功能,且发展完整。
2.
无穷尽的资源
地表上蕴藏量的元素,除了氧之外就是矽和铝,而这两种元素均为陶瓷化合物中的重要成分。因此陶瓷的原料来源可说是取之不尽用之不竭,
对工业的大量生产上占一大优势。换能器是一种能量转换器件,其性能描述和评价需要许多参数. 换能器的特性参数包括共振频率、频带宽度、机电耦合系数、电声效率、机械品质因数、阻抗特性、频率特性、指向性、发射及接收灵敏度等等. 不同用途的换能器对性能参数的要求不同,例如,对于发射型换能器,要求换能器有大的输出功率和高的能量转换效率;而对于接收型换能器,则要求宽的频带和高的灵敏度及分辨率等. 因此,在换能器的具体设计过程中,必须根据具体的应用,对换能器的有关参数进行合理的设计.超高能声波测距技术使超声波测距技术有了重大的突破,它不仅拓宽了超声波测距技术的应用场合(适用极恶劣的工作环境),而且使用智能调节技术,大大提高了超声波产品的可靠性及性能指标,让用户无后顾忧 。
回波处理技术,5-50KHZ的超高强波频率使物位计量程可达到120米,适用介质温度为–20℃— +175℃。2004年11月4日出版的5NATURE6报道了日本学者利用反应模板晶粒生长(RTGG)制备出了织构碱金属铌酸盐无铅压电陶瓷,压电常数d33可达416pC/N,机电耦合系数kp=61%,其性能堪与PZT陶瓷媲美。智能的全自动调节发波频率,自动的温差补偿功能使其工作更加。HpAWK系列产品还拥有灵活多变的工作方式(供电电源可为12VDC、24VDC、110VAC、220VAC;二/三/四线制同一仪表中可随意组合。它还拥有的远程GSM、CDMA、互联网调试功能,使得用户随时可以得到技术支持。