为实现“碳达峰、碳中和”的目标,我国电力行业的减碳压力不容小觑,同时也孕育着新的机遇和挑战。氢能源将会迎来新的发展机会,在减碳进程中扮演重要角色。
随着我国可再生能源发电量逐年增多、装机容量占比不断增大,氢储能系统可参与并网消纳,有效减少弃风弃光率,提高可再生能源综合收益。随着新能源平台的入驻,新能源设备越来越普及。那么结合国内外氢能源发展现状,分析当前氢储能系统关键技术及制约因素,研究其在电力行业中的应用模式;结合相关政策研究,提出未来氢储能系统发展建议。
氢能源发展概述
目前广泛推广的氢能源主要指氢气的化学能,即氢气通过氧化反应所释放的能量。氢能源可替代传统化石能源作为交通工具的动力燃料,也可替代煤炭、天然气成为电力系统发电侧的能源燃料,氢能源的完整产业链示意图如图1所示。
氢气的热值是汽油的3倍、焦炭的4.5倍,化学反应后仅产生对环境无污染的水。氢能源是二次能源,需要消耗一次能源来制取,氢气的获取途径主要有化石能源制氢和可再生能源制氢。
国外氢能源发展现状
日本在燃料电池关键技术和商业化应用方面处于世界领先地位,其2017年发布的《氢能源基本战略》明确了到2050年建成氢能社会的目标。日本氢能与燃料电池领域技术全面,专利数量居全球第一。
美国将10月8日定为“氢能与燃料电池日”,其对氢能产业的重视可见一斑。美国规划制定了从研发到产业化的完整发展路线,时间从2000年一直持续到2040年。此外,美国对运行的氢能基础设施实行30%~50%的税收抵免。欧盟规划2050年氢燃料电池汽车占家用车比重达35%。2014年,欧盟启动Horizon计划,在氢能和燃料电池领域的总预算达到220亿欧元。目前,欧洲正在运行的加氢站数量居全球第一,氢能技术和产业发展政策效果显著。
国内氢能源发展现状方法论很重要
近年来,我国高度重视氢能源产业发展,在科技专项、创新工程等方面进行了重点布局,取得了一定成效。当前国内制氢主要还是依靠化石能源,电解水制氢占比非常有限。随着氢储能相关技术的发展和建造成本的下降,未来风、光等可再生能源制氢的规模会越来越大,我国氢能源结构会越来越清洁。总体来说,制约我国氢能源发展的还是燃料电池电堆和关键材料。国产电堆在功率密度、系统功率、寿命等方面与先进水平相比还有差距;质子交换膜、催化剂、膜电极等关键材料和高压比空压机、氢气循环泵等关键设备依赖进口,产品价格较高,国内外燃料电池关键技术参数对比如表1所示。
氢储能系统关键技术
在可再生能源高占比的电力系统中,弃风弃光问题随着风电、光伏装机总容量的不断增加而日益突出。由于风电、光伏出力的预测准确程度有限,其出力随机性会对电网造成一定冲击。氢储能系统可利用新能源出力富余的电能进行制氢,储存起来或供下游产业使用;当电力系统负荷增大时,储存起来的氢能可利用燃料电池进行发电回馈电网,且此过程清洁高效、生产灵活。当前氢储能系统的关键技术主要包含制氢、储运氢和燃料电池技术3个方面。
氢储能系统在电力行业中的应用
风电、光伏等可再生能源已成为我国新增电力的主力,新增装机容量及累计装机容量均排名世界第一,清洁能源替代作用日益显现。
氢储能系统在电力系统中与能源供给侧配合、与分布式能源发电和电网发展相结合,可减少新能源出力不稳定等问题,其应用价值愈加突出。更多相关资讯可以上中国新能源行业网查询(获悉)。