在高速路的各个出入口安装车牌识别设备,车辆驶入时识别牌照将入口资料存入收费系统,车辆到达出口时再次识别其牌照并根据牌照信息调用入口资料,结合出入口资料实现收费管理。这种应用可以实现自动计费并可防止作假,避免了应收款的流失。
高速公路已开始实施联网收费,随着联网范围的扩大,不同车型的收费差额也越来越高,司机利用现有收费系统的漏洞通过中途换卡进行逃费的问题将越来越突出,利用车牌识别技术是解决此类问题的根本方法。
车牌识别系统进行车牌识别的基本步骤1) 牌照定位,定位图片中的牌照位置;
2) 牌照字符分割,把牌照中的字符分割出来;
3) 牌照字符识别,把分割好的字符进行识别,组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
1) 牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,选定一个较佳的区域作为牌照区域,并将其从图像中分离出来。
2) 牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部较小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择较佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
车牌识别系统触发方式的间接法间接法:指通过识别安装在汽车上的IC卡或条形码中所存储的车牌的信息来识别车牌及相关信息。IC卡技术识别准确度高,运行可靠,可以全天候作业,但它整套装置价格昂贵,硬件设备十分复杂,不适用于异地作业;条形码技术具有识别速度快、准确度高、可靠性强以及成本较低等优点,但是对于扫描器要求很高。此外,二者都需要制定出统一的标准,并且无法核对车、条形码是否相符,也是技术上存在的缺点,这给在短时间内推广造成困难。
车牌识别系统红外光路线处理红外光路线是指利用反光车牌和红外光的光学特性,用红外摄像机采集车辆灰度图像,由于红外特性,车辆图像上几乎只能看见车牌,然后用黑白图像处理方法识别车牌。950nm的红外照明装置可抓拍到很好的反光车牌照图像。因红外光是不可见光,它不会对驾驶员产生视觉影响。另外,红外照明装置提供的是不变的光,所抓拍的图像都是一样的,不论是在一天中较明亮的时候,还是在一天中较暗的时候。例外是在白天,有时会看到一些牌照周围的细节,这是因为晴朗天气时太阳光的外光波的影响。采用红外灯的缺点就是所捕获的车牌照图像不是彩色的,不能获取整车图像,并且严重依赖反光车牌材料。