过去用于诱导保护性步进以保持人体静止平衡的方法要么缺乏对初始下降条件的控制的灵活性,要么涉及限制系统移动性的相当大的质量。本报告描述了用于引起保护性响应的步进电机闭环腰拉系统的设计和功能。应用载荷 - 运动曲线组合的台架测试表明,力水平大于204N时性能下降,这完全在人体实验中遇到的水平。光学编码器反馈设计允许每步0.00225 mm的位置精度。速度与记录速度的回归分析得出可接受的拟合(r2 = 0.99)。平均上升时间为63.0 +/- 18.0(SD)ms,并且与器件的负载极限一致。在人类实验中,反复的扰动一直在实现。对于具有不同几何形状,重量和惯性的受试者,施加的运动轮廓在水平上通常是可比较的,尽管存在轻微位置滞后的趋势。该方法允许灵活且准确地控制扰动引起的下降的初始条件以引发步骤。系统尺寸和可移动性使其可以在临床环境中实施。
要相关相关的知识,知道什么是减速比,在了解清楚以后,将选用的电机额定扭矩和减速比相乘,得到的数值会比产品上标注的型号小,同时还要考虑考虑到实际工作中所需要的大工作扭矩,综合分析,选出体积的减速机。降低成本,经济效益。
了解行星减速机的回程间隙,一般来说,间隙越小,精度越高,成本越高,用户在选择的时候,考虑到实际使用精度所需选择合适的行星减速机,无论是横向还是径向受力,都是需要考虑的。在安装的时候,要考虑到使用的可靠性,大化的避免不必要的故障问题。从而 更好的延长设备的使用寿命。
步进电机低速转动时振动和噪声大是其固有的缺点,一般可采用以下方案来克服:
A、如步进电机正好工作在共振区,可通过必变减速比提高步进电机运行速度。
B、采用带有细分功能的驱动器,这是常用的,简便的方法。因为细分型驱动器电机的相电流变化较半步型平缓。
C、换成步距角更小的步进电机,如三相或五相步进电机,或两相细分型步进电机。
D、换成直流或交流伺服电机,几乎可以完全克服震动和噪声,但成本较高。
E、在电机轴上加磁性阻尼器,市场上已有这种产品,但机械结构改变较大。
在选型过程中步过电机转速的选择对于电机的转速也要特别考虑。因为,电机的输出转矩,与转速成反比。就是说,步进电机在低速(每分钟几百转或更低转速,其输出转矩较大),在高速旋转状态的转矩(1000转/分--9000转)就很小了。当然,有些工况环境需要高速电机,就要对步进电动机的线圈电阻、电感等指标进行衡量。如何选择步进电机,选择电感稍小一些的电机,作为高速电机,能够获得较大输出转矩。反之,要求低速大力矩的情况下,就要选择电感在十几或几十mH,电阻也要大一些为好。